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Abstract

Adult neurogenesis in the hippocampus region of the brain is a neurobiological
process that is believed to contribute to the brain’s advanced abilities in complex
pattern recognition and cognition. Here, we describe how realistic scale simulations
of the neurogenesis process can offer both a unique perspective on the biological
relevance of this process and confer computational insights that are suggestive of
novel machine learning techniques. First, supercomputer based scaling studies of the
neurogenesis process demonstrate how a small fraction of adult-born neurons have a
uniquely larger impact in biologically realistic scaled networks. Second, we describe
a novel technical approach by which the information content of ensembles of neurons
can be estimated. Finally, we illustrate several examples of broader algorithmic
impact of neurogenesis, including both extending existing machine learning
approaches and novel approaches for intelligent sensing.
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1. INTRODUCTION

The leveraging of neuroscience in the development of novel approaches to computation has long
been suggested as a potential alternative to conventional computing technologies. The rationales
for the brain’s potential inspiration for computing are numerous: the low energy consumption of
the brain, the ability to make high consequence decisions in short time spans, the ability to
perform cognitive operations in complex contexts, the formation and use of episodic-like
memories, and the ability to rapidly extract features and make deep insights based on
observations of diverse multi-sensory scenes are all aspects of the brain’s functions that would be
revolutionary if implemented in computing systems. However, despite this powerful inspiration
and multiple billions of dollars annually invested in neuroscience research in the United States
alone, there is little notable impact of these neuroscience concepts on computational algorithm
and architecture research today.

The field of computational neuroscience is increasingly being recognized as a potential link
between the mostly experimental biological research and the engineering of brain-inspired
computing systems. Computational neuroscience is quite distinct from historical computer
science research areas such as artificial intelligence (Al) and machine learning. These fields
have leveraged historic concepts from psychology and neuroscience but have made little effort to
utilize modern neuroscience findings in their research. Indeed, this lack of a clear link between
neuroscience and domains such as artificial neural networks (ANNs) and Al is not widely
appreciated outside of those fields, leading to both misconceptions about the biological relevance
of these computing approaches and generally providing confusion about what neural-inspired
computing should look like.

1940s-50s 1960s-70s 1980s-90s 2000s

Neuroscience
AT
I @)

7

'S

4

Reservoir Computing >

Q)

Nothing
crosses this
line

Reinforcement Learning
Modern

Machine Learning
=

1 e

Support Vector Random Forest
Machines Decision Trees

Artificial Neural Nets

Backpropagauon Convolutional Neural Deep Learning
Nets

Figure 1 - Genealogy of machine learning and neuroscience relationship

The establishment of a clear strategy for leveraging neuroscience insights into computational
methods (either existing or new) is potentially critical for fully realizing the aforementioned




potential of brain-inspired computation as a post-Moore’s Law technology base. Indeed, this
technical path has been identified as a critical research direction in a number of locations,
including the upcoming IARPA program MICRONS. Much of this research is related to the
broader goals of President Obama’s BRAIN Initiative, which has the goals of greatly increasing
the resolution of systems neuroscience research and identifying paths to leverage that research in
a number of application areas relevant to the BRAIN Initiative’s sponsors, which include both
health centric government agencies such as the National Institutes of Health and national security
centric agencies such as the Department of Defense.

This report describes the efforts in the Episodic Memory / Neurogenesis LDRD which had goals
very similar to the overall goals in the programs described above. Our research project focused
on the computational neuroscience investigation of the adult neurogenesis process in the
hippocampus, which is a process increasingly appreciated to be critical in higher cognitive
function and episodic (event-based) memory formation. Furthermore, neurogenesis is a
relatively recently appreciated and unique process in the brain which has had little influence
outside of the neuroscience community. As a result, neurogenesis represents a neurobiological
process that is both potentially of critical importance in achieving neural function in algorithms
but is also absent from most conventional machine learning research.

The research performed in this project has impact in two areas. First, the neuroscience
community has long lacked a strong theoretical and computational understanding of the value of
neurogenesis in cognitive function. The modeling results in this study, along with the
corresponding work in designing analytical techniques and validation approaches, represents a
substantial contribution to the field. In particular, the scaling results described in chapter 3 are
notable for their relevance to understanding neurogenesis function in humans. Second, the
potential relevance of applying concepts based on neural dynamics and processes to machine
learning algorithms has often been cited, but there remain few examples of effective translation.
Chapter 5 will illustrate the potential long-term impact of this work in other application areas.

1.1. Biological process of neurogenesis
1.1.1. What is known

The study of the biological process of adult neurogenesis only began relatively recently; while
observations of the neurogenesis process in the adult go back to the 1950s, it was only in the
1990s that extensive characterization and appreciation of the process occurred. Since then, the
neuroscience community has rapidly characterized the neurogenesis process at all scales ranging
from molecular and cellular studies to systems and behavioral levels. This research is extensive,
and we reference the reader to the numerous reviews of this in literature, including several
supported by this LDRD.

Briefly, the process of adult neurogenesis in the dentate gyrus (DG) region can be summarized as
follows. Each day, roughly 1,000 new neurons are born from a stem cell population that resides
locally within the DG. This rate is highly regulated by a number of intrinsic and extrinsic
factors, as is the ultimate survival of the neurons that are born. While numbers differ somewhat
from study to study, within several weeks about half of the neurons that are born no longer exist,
most likely due to activation of apoptotic pathways (an internal gene signaling cellular death



mechanism). If a neuron lives to about four to six weeks old, it most likely will persist
indefinitely.

Notably, it is very possible — even likely — that there is a secondary cell death mechanism that
impacts mature neurons. Most studies quantifying neurogenesis levels are in rats and mice,
which live to roughly at most two years old. This relatively short lifespan makes it possible that
a low neurogenesis rate (~5% a month surviving) that diminishes greatly with age (6 to 9 month
old rats have markedly lower neurogenesis rates are considered old in neurogenesis studies) may
not require a substantial cell death mechanism. However, the observation of neurogenesis in
humans at roughly a 1-2% per year rate (which in absolute numbers is similar to levels in
rodents) is suggestive that there must be a mechanism to replace embryonic and developmentally
born neurons. Since quantification of cell death is challenging, this has remained a speculative
notion.

In rodents, new neurons take approximately two months to achieve maturity. During this time,
they progress from a “neuroblast” cell phenotype, which lacks the projections commonly
associated with neurons, to fully functional granule cells that are indistinguishable from those
born at earlier ages. This process requires the growth of a pronounced apical dendrite (the input
projections to neurons) and an output axon called a “mossy fiber”. By just over two weeks of
age, these neurons begin developing dendritic spines which are the location of the input synapses
onto the neuron’s dendrites . Likewise, around this age they begin to form axonal boutons or
new output synapses in the downstream hilus and CA3 regions.

Once new input and output synapses start to form at about 14 to 16 days old, the cells mature
rapidly, obtaining new synapses at a rapid pace. By about two months old, the neurons have
about 5,000 to 6,000 input glutamatergic synapses from both internal and external cortical
populations. Glutamate is the major neurotransmitter of the brain, and it induces a positive
current in the downstream neurons by opening a channel permeable to Na+ and K+ ions.
Furthermore, mature DG neurons receive a significant number of inhibitory inputs from neurons
referred to as interneurons. Interneurons release GABA as a neurotransmitter, which opens Cl-
channels, thus lowering the voltage of the neuron further, which keeps it from firing. Notably,
unlike ANNSs, synapses in biological systems always use the same neurotransmitter. As a result,
if a synapse is positive, it will always be positive; and vice versa for inhibitory synapses. A final
key observation is that synapses on young neurons are more plastic, i.e., more amenable to
learning, than those on mature neurons.

In addition to this difference in connectivity and synaptic plasticity, young neurons are distinct
from the mature neurons in their basic electrophysiological properties. Young neurons typically
have a higher membrane resistance, which allows individual synapses to have a higher relative
impact than a similar weighted (same maximum conductance) synapse on a mature neuron. The
combination of these properties — the physiology, connectivity, and plasticity of young neurons —
has led to a widespread acceptance that these cells are more active or hyperexcitable compared to
the mature population.

This increased excitability for young neurons is notable given the existing hypotheses for DG
function. Prior to the widespread acknowledgement that the DG hosted new neurons, theorists
and computational neuroscientists had generally come to a consensus that the DG was
responsible for two key functions, both related to a key memory encoding role. Since the 1980s,
the DG has been thought to be critical for driving the encoding of memories in the downstream



CA3 region . This “training” function was due in part to its sparse but powerful output synapses,
which were potentially capable of individually driving a downstream CA3 pyramidal neuron. As
a result, the DG could act like a quasi-supervised trainer to the rest of the hippocampus’s
memory formation. The question has remained what the DG is training. One hypothesis is that
the DG is simply responsible for selecting as orthogonal a sparse representation in the
downstream CA3 network as possible to minimize interference between memories. At the
extreme, this is effectively a “hash coding” hypothesis; each memory gets randomly assigned a
subset of neurons in the DG, which then results in a random CA3 ensemble. In the high
dimensions that are in play in the DG and hippocampus, a somewhat sparse activation could
yield effectively unlimited number of combinations and a very low potential rate of interference.
The other hypothesis is more information based; the DG is not producing an information-free
hash code, but rather a very sparse code that is a function of the cortical inputs that drive the
whole hippocampus. In this view, the information content of the DG can be extremely high, but
the outcome is the same; a nearly orthogonal representation ensemble in the CA3 to encode
whatever events are occurring.

The difference between these two hypotheses is subtle, and indeed it has caused a significant
amount of debate in the broader hippocampus field (see http://www.patternseparation.com for
active discussions on this topic). Notably, the implications for neurogenesis are potentially quite
substantial. The bulk of neurogenesis behavioral studies, which are explained in detail in
Aimone et al., 2014, have interpreted their results using the pattern separation hypothesis,
however it is quite possible that alternative interpretation based on information coding may yet
prove informative . It is in this context that the computational modeling work described here
was motivated.

1.1.2. Open questions in neurogenesis research

Importantly, there remain a number of key questions outstanding in the neurogenesis community.
Many of these reside at the cellular level, such as noting the genetic instructions that control the
neurogenesis process and understanding which components regulate the proliferation and
differentiation of these cells. While these questions are important, particularly for health related
applications, their focus is too low level to have significant impact on the application focused
research here.

What could have impact on the potential algorithmic impact of neurogenesis are current studies
focusing on the functional impact of neurogenesis on the overall DG and hippocampus function.
While the theories of neurogenesis function mentioned are well grounded in what is currently
known about the process, it is possible, and even likely, that there are complexities about the
interaction of young (or mature) neurons with other neurons in the DG that are currently not
incorporated in anyone’s models or theories. This is a common challenge in neuroscience
broadly; the overall complexity of the system is such that one is never entirely confident that all
models and parameters are perfectly constrained. Nonetheless, it is worth noting that from a
biological point of view, a number of current studies in the broader research community may at
one point in the future identify system-level interactions of functions that to date are entirely
unappreciated in the field.


http://www.patternseparation.com

1.2. Algorithmic leveraging of neurogenesis
1.2.1. Neurogenesis-inspired artificial neural networks

Historically, most artificial neural networks (ANNs) such as multi-layer perceptrons and other
related network such as deep learning and recurrent neural networks have not used any structural
dynamics in their generation or operation; rather most ANNs use a pre-constructed network and
simply fit a set of synaptic weights to whatever data is available for training. In most
applications, this pre-operation training has been sufficient; however it has been recognized in a
number of areas that these ANNs are not actually well suited for online learning, which is
essentially training the network to new data once trained on other data. Generally, these
algorithms suffer from a phenomenon known as the stability-plasticity dilemma, whereby a
network can either retain previously trained information or learn new information at the risk of
losing the old information. Further, in the case of simple ANNs, many models trained through
backpropagation, which is the standard training technique, are squarely on the “stability” side of
that dilemma; empirically backpropagation often sends a model’s weights into such a highly
trained state that new data is not well suited for changing the weights to new conditions. As a
result, heavily trained or overtrained ANNSs often are incapable of learning new data well at all
without other manipulations. In alternative configurations, ANNSs that are forced to learn the
new data may suffer from what is known as catastrophic interference, whereby the attempt to
introduce a new memory into an existing ANN can collapse the entire attractor landscape of the
network, leading too much of the information stored being lost.

Along these lines, there have been a few examples of ANNs incorporating a neurogenesis-like
process to get past the limitations of ANNs in acquiring new information. These algorithms
were initially quite basic, such as taking simple multi-layer perceptrons and training them using
backpropagation to recognize one alphabet, and then demonstrating that the replacement of
nodes in the hidden layer (the neurogenesis process) allows the network to learn a new alphabet
(Figure 2). In this example, based on the 2004 Chambers study, a network capable of
representing the Roman alphabet (left) is incapable of representing certain letters of the Greek
alphabet, such as 0 (middle), which are not directly corresponding to their Roman counterpart.
Even with further online training, these networks often cannot learn the new alphabet.
However, if the trained network has a marginal replacement of a number of hidden nodes (right),
the network is then capable of learning with high fidelity the new alphabet.

Figure 2 - lllustration of neurogenesis impact on simple ANNs



From this simple example, there were a number of more elaborate multi-layer perceptron studies,
using a number of different training techniques. Within the basic ANN framework, methods
using neural addition (as opposed to replacement), unsupervised Hebbian learning (as opposed to
backpropagation), and autoencoder strategies (as opposed to classification networks) were used,
each showing a similar benefit for neurogenesis in allowing an already trained network to learn
new information.

1.2.2. Potential broader impact of neurogenesis in application directed models

The ANN-neurogenesis research illustrated above is indicative of a potential role of new neurons
in making ANNs more robust to dynamic data acquisition, but they are nonetheless limited to the
same limitations of ANNSs in general. First, while the neurogenesis process in biology is quite
dynamic (see section 1.1.1), ANNs rarely have time directly incorporated within their nodes’
behavior, with generally only recurrent networks which evolve over a number of cycles having
an ability to represent something akin to time. The introduction of new neurons gradually into a
network likely provides a distinct temporal scale onto the system, but this has not been
extensively explored. Second, while ANNSs are theoretically a general structure for a number of
node-connection based model architectures; in practice they implement a connectivity structure
far different than anything seen in biology. ANNSs typically are highly connected, with most (or
every) neurons connecting to most (or every) other neurons in a neighboring layer. The
differentiation between neurons thus only exists in the set of weights which are established
during training. In contrast, the biological network that neurogenesis occurs in is highly
structured, with a very distinct connectivity pattern and a number of distinct cell types that
uniquely affect the dynamics and maturation of these new neurons. Finally, in the ANN
condition, all nodes are effectively identical. In contrast, the neurogenesis process appears to be
special precisely because the new neurons, or new nodes, are behaviorally and connectively
distinct from those neurons in the existing population.



2. HIGH FIDELITY MODELING OF ADULT NEUROGENESIS

Our approach to computationally addressed both whether young neurons are contributing to
pattern separation or an alternative function and whether new neurons are sufficiently valuable in
humans. This work leverages insights from our previous model of DG neurogenesis, but uses a
considerably higher temporal and anatomical resolution to assess the implications of new
neurons on DG neuronal representations. Briefly, our model focuses on the DG region of the
hippocampus along with its two primary inputs, the lateral (IEC) and medial (mEC) entorhinal
cortices. The DG consisted of 7 layers, the principal neurogenic granule cell (GC) layer and six
feedback and feed-forward interneuron layers, and the IEC and mEC were controlled to represent
object and spatial grid cell information respectively . To model neuronal dynamics, we use
Izhikevich spiking neurons, which is a reduced order model that is well suited for large scale
simulations . Synapses were modeled using an exponential decay with an online spike-timing
dependent plasticity (STDP) rule . Neurogenesis was implemented by young neurons gradually
updating their dynamics and increasing their synaptic connectivity over time , and the model
parameters of different neuron types were selected in accordance to physiology observations
taken from several laboratories .

2.1. Model architecture

The neural network model was designed to capture the major neuron types and diverse
interneuron classes in the dentate gyrus. While not every identified population of neurons was
included, an effort was made to include most of the diversity present in the system. The network
contained 9 full neuron layers (Table 1), several modulatory regions modeled as single neurons,
and over 40 different connection types (Table 2).
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Figure 3 - Cell populations included in high fidelity simulations.
Cell numbers are from rat.



IEC @ septal ACh

{nicotinic)

Figure 4 - Excitatory connections of high fidelity model

@ septal GABA

/MOPP

19¥vi

I
2 e

Figure 5 - Inhibitory connections of high fidelity model

Unlike our previous study (in which the model architecture emerged from a developmental
process), the majority of the model was generated at the onset of the simulation in a fully
developed form, and was static throughout its duration or simply had a small neurogenic
population continually maturing over several days.

2.1.1. Neuron parameters and variables

At model initialization, each neuron was assigned a series of parameter values that were fixed for
the course of the simulation. Some of these values were assigned based on their neuron type,
and others were computed to fulfill another

The Izhikevich model used for neuron simulation is designed to approximate neuronal dynamics
with more realism than an integrate and fire (or other simple) neuron, while more
computationally tractable than a conductance based (e.g., Hodgkin-Huxley) model. The key
parameters (a,b,c,d,k) are abstract with no direct biophysical link, although their effects can be
correlated with different neuronal channels. In theory, these parameters can be selected to fit any
neuron’s physiology; however in practice the fitting of the model to different neuron types is



non-trivial and in this study the parameters were only loosely fit so as to approximate the general
behavior of neurons observed in slice physiology studies.

Neurons were assigned a spatial location, either based on index (septo-temporal position) or
randomly (transverse position and depth within layer). The x-location of each neuron (y,) was
assigned sequentially (y,=n/N). The y-location (y,) and z-location (y.) were assigned from a
uniform random distribution between zero and one.

Neuron dynamics were computed according to a modified version of the model described by
Izhikevich. Under the Izhikevich scheme, each neuron requires both parameters that explicitly
represent biophysical features (capacitance, voltage threshold) and model-specific parameters
that are selected to best fit the observed neuronal dynamics.

Biophysical Izhikevich parameters

C —capacitance of the neuron’s soma

Egiutamate — the reversal potential of glutamatergic receptors (OmV)

Es454— the reversal potential of GABA-A receptors (corresponds to the reversal of CI-)
v, — the resting potential of the neuron

v, — the threshold potential of the neuron

1,10 — the current typically required for the neuron to reach the threshold voltageif currently at
resting potential

Model-specific Izhikevich parameters

a —Roughly corresponds to a decay constant of K+ channels
b — Roughly corresponds to weighting of voltage dependent K+ channels
¢ — The reset voltage of the neuron after an action potential

d — The spike-dependent reset of the ‘u’ parameter. Roughly corresponds to the action potential
activation of K+ channels

k — Sensitivity of the neuron to voltage deflections. Affects speed of action potential. Roughly
corresponds to balance between Na+ and K+ conductances

k; - Parameter that increases ‘k’ during an action potential. Corresponds to voltage dependent
Na+ channels

Neuron dynamic variables

v —Izhikevich parameter corresponding to a neuron’s voltage.

u —Izhikevich “reset” parameter. Roughly corresponds to a neuron’s open K+ conductance
2.1.2. Synapse parameters and variables

Synapse mapping

source — the pre-synaptic neuron ID. This neuron’s activation determines whether the synapse
may release neurotransmitter



target — the post-synaptic neuron ID. This neuron will be the recipient of the synapses
neurotransmitter release

Each synapse has a source neuron and a target neuron

type — Identification of the type of synapse. Many parameters are constant across type
dist — a measure of the time between the pre-synaptic and post-synaptic neuron

g act — the absolute value of conductance achieved by activating the synapse

numsites — the number of release sites at the synapse (each has an independent probability of
releasing transmitter)

Prob — the probability a pre-synaptic action potential will result in the release of transmitter
Synapse dynamic variables

g tot — the realized value of conductance of the synapse

I syn — the total current flow through the synapse

2.1.3. Generation of Connectivity

Synapse numbers in table X are based on the target neuron.

Synapse number scaling

N
_ source
Nsyn - Nsyn,O X ! /N (1)

source,0

Each target neuron has a physical position in the network (x,y,z,) and these positions are used to
determine which source neurons it may receive inputs from. Each neuron in the source layer has
a position (x;, yy, zy) as well, and each synapse type has a variance (axonal/dendritic spread)
associated with it in each dimension (¥, Vs, Zsig). Notably, these dimensions are not all
relevant for all connection types.

Each target neuron computes its probabilities of receiving an input from each neuron in the
source layer according to normal distribution probability density functions that are based on
relative positioning and connection type

Standard projections (only septo-temporal axis matters)

2
X

20

- (Xxi - Xxj)z
) (2)

. 1
PSyn(l’J) = pdf(Xxi’Xxj;Gx) = o \/ﬁuxp(
X

Where y,; is the x-position of the ‘i' neuron, and y,; is the position of the ‘j” neuron, and o, is the
standard deviation of the x-positional spread.

Once these unscaled connection probabilities are computed, a normalized cumulative distribution
(norm-cdf) is computed for each specific target neuron across all source neurons. For each of the
number of desired source synapses, a random number is drawn from a uniform distribution



between (0, 1) which is then compared to the cumulative distribution. For example, if the
random number drawn is 0.5, then the source neuron situated where the norm-cdf passes 0.5 will
be selected to form a synapse.

PDF(target, source, variance)

0 200 400 600 800 1000
Source Neuron Location

Figure 6 - Example probability density function of standard projections

0.8
0.6
0.4

0.2

Cumulative probability of synapse

0 200 400 600 800 1000
Source Neuron Location

Figure 7 - Example cumulative density function of standard projections
Anti-topographical projection (mossy cell preferential avoidance of local S-T domain)

Psyn(i’j) - pdf(xyi’xyj’cy) x pdf(xxi’xxj’cx) x (pdf(xxi’xxj’cx) - pdf(xxi’xxj’o's x Gx)) (3)

Note: Mossy cell axons preferentially avoid terminating on GCs (and presumably other DG
neurons) in the local septo-temporal region. By subtracting a probability with a tighter standard
deviation, neurons that are close together will have a “negative” probability of connecting
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Figure 8 - Example probability density function of mossy cells
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Figure 9 - Example cumulative density function of mossy cells

Notably, this algorithm guarantees that each target neuron receives a fixed number of synapses;
however it does not ensure that source neurons will be equal in their impact. In fact, it is
expected that the impact of source neurons on a downstream population will vary considerably
(which is supported by biologically observations). Further, it is important to note that there is no
check to keep neurons from receiving multiple inputs from the same source neuron. As a result
it is possible, and indeed even common, for a neuron to have several source neurons from which
it receives multiple synapses. Importantly, these synapses are uncoupled from each other aside
from the common target; their weights, learning, and release probabilities are independently
assessed.
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Figure 10 - Example synapse formation from standard projection

Figure 11 - Example synapse formation from mossy cell projection
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A uniformly distributed random number is then generated for each possible source — target (i,j)

projection in the mapping, and this number is then multiplied by its associated probability.
Connections are subsequently generated for the N, highest values onto each target neuron.

Initializing connection strengths

Synaptic strengths were randomly selected using a log-normal distribution
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Zactij = EXP(Mis T Ogise X M(0,1)) (8)

Where 1(0,1) is a random number from a Gaussian distribution of mean 0 and standard deviation
1.

Furthermore, each synapse class was given a synaptic delay to represent axonal and dendritic
conductance delays. These conductance delays were constant for a given synapse class, they did
not vary for dorsal ventral locations.

2.1.4. Generation of immature neurons

At the onset of each simulation, a target percentage of neurons, Py, Was identified. A random
fraction of P, GC neurons were classified as “young” and their age was determined by
uniformly distributing those neurons identified as “young” across ages from -34 to 55 days old.
Those neurons that were assigned a negative age represent those yet to be “born”.

The spiking ability of GCs changes dramatically as they progress from 19 days old until about 25
days old . This maturation dynamic was implemented by altering the relevant Izhikevich
parameters for neurons within this age range. Each age had a set of distinct Izhikevich
parameters that were used to define its dynamics.

Similarly, the density of synaptic inputs changed according to this sigmoidal function

(o)

age - [,
Page = 0.5 x (1 + tanh( ))
P

©)

Synapses were then retained for neurons below 56 days old according to this probability.
Neurons below 0 days old (effectively those that are not born yet) could not have any synapses.

In addition, neurons below 20 days old were not allowed to communicate their spikes. While
under some simulation conditions their dynamics and synaptic connectivity could potentially
permit spiking, their spikes were neither recorded nor impactful on other neurons.

The final simulation results described here do not involve maturation over time, however the
model was designed with this capability and the model was tested over multiple days.
Maturation is implemented by advancing the age of each immature neuron by one day, which
directly leads to re-setting of the neuron’s dynamic parameters to those of its new age. Further,
the gain of age may result in new synapses being formed, effectively based on the derivative of
equation 12. Each new synapse that is formed is generated according to the rules outlined above.



2.2. Model dynamics
2.2.1. Neuron dynamics

Active neuron dynamics in the soma were simulated using Izhikevich dynamics. The Izhikevich
neuron model uses two state variables - V', which represents voltage (mV), and '»', which is an
inactivation variable. Below an action potential peak (Vpeqr=35mV), V' and 'u' are updated
according to the following equations.

dv 1
e GO R CRRA R VRSO RUTER IS W
where... 1o
k(v) =k, +k, x tanh(v - v,)
d
Seax(ox(v-v)-u) (11
dt
ifv>35
u—u-+d (12)
vec
ifv<Egapa
(13)
Ve—Egapa

When the neuron reaches threshold (v>v,..), the neuron is considered to have fired an action
potential, and is reset to a reset voltage ('c' parameter) and the 'u' variable is reset to a separate
value ('d' parameter).

Table 1 lists the Izhikevich parameters used for the different neurons in the model. These
parameters were selected manually to approximate the behavior of DG neurons in slice.

2.2.2. Synapse dynamics

Synapses were simulated with a simple time-decay conductance rule. At the onset of a synaptic
event, the conductance was simulated using an instantaneous rise time, followed a simple decay
with a time constant ‘tgy,,”. At each time step, the driving forces of the open channels were
updated.

To determine if a synapse receives an action potential (and thus is capable of releasing
transmitter) at time ‘t’, the synapse referenced whether its source neuron fired an action potential
at time ‘t-t4 . For each synapse

SYDyesicles 5(fsource(t - tdist) - 1) x B(Nsites’psyn) (14)



Where d(*) is a delta function determining whether the source neuron fired at time #-#,;;, and B(*)
is a random number selected from the binomial distribution with parameters corresponding to the
number of synaptic release sites and the probability each site is activated upon receiving an
action potential.

Synapse equations

At each time step, every synapse is updated according to decay from its previous state and
addition of new synaptic events

dggyn 1

at o B (9

syn

Synaptic events resulted in the potential release of neurotransmitter at the synapse, but this
release is stochastic according to the synapses’ probabilities of release.

If transmitter released

ngn(_gSyn * 8active * SYMyesicles (16)

Total synaptic input currents are then summed for each neuron, based on the conductances and
driving forces of the active synapses:

I (Etrans,i - V) (17)

.= . X
syn,i gsyn,l

= D i (18)

i = input syns

Table 2 lists the synaptic strengths, neurotransmitters (and reversals) and time constants for each
synapse type.
2.2.3. Synaptic Plasticity

Synaptic plasticity rules were taken from Clopath and Gerstners’ online spike-timing dependent
plasticity (STDP) model . This STDP model has a number of tunable parameters, which is
capable of showing a number of different learning profiles. We instantiated the learning under
conditions which induced a negative weight change if a post-synaptic spike occurs before a
synaptic event, and a positive weight change if a post-synaptic spike occurs after a synaptic
event.

Because of the nature of the long-term depression (LTD), negative learning could only occur at a
time step when a pre-synaptic spike arrives and the post-synaptic voltage is above a threshold.



d

aw' = A p X X(t) % maxu(vneg(t) -v,,0) (19)

d
Tnegavneg =v(t) - Vneg(t) (20)

Where v,,..(2) is a filtered postsynaptic voltage, 7., is the time constant of the postsynaptic
voltage filtering, 4, 7p is the negative learning rate, and X(z) is a Boolean value of whether a pre-
synaptic neuron spike arrived at time ¢.

In contrast, positive learning, or long-term potentiation (LTP), can occur when a post-synaptic
event (usually a spike) occurs at any of a number of time steps after a pre-synaptic spike arrives,
and as a result operates using a filtered spike train as its pre-synaptic input. Positive learning is
governed by the following equations

d .
aw = AL 1p X Xg(t) X max I (v(t) - v,,0) x maxu(vpos(t) -v,,0) 21)
d
Thosg,Vpos V() = V(D) (22)
d
T~ X(® - x50 (23)

in which v,,.4(?) is a separate filtered postsynaptic voltage, with 7, as the time constant, 4;7p1s
the positive learning rate, x4;(?) is a filtered pre-synaptic spike train with 7, as its time constant.

2.3. Simulation inputs and parameters
2.3.1. Input neuron firing distributions

There were four inputs to the model: a single medial septum GABA neuron, a single medial
septum acetylcholine neuron, a population of projecting IEC neurons, and a population of
projecting mEC neurons.

The MS-GABA septal neuron was simulated by providing a depolarization of I=120pA, which
induced natural oscillations in its activity based on the tuned parameters. This represented the
theta source in the network.

The MS-ACh neuron was given a constant depolarization of [=260pA, but was inhibited by the
MS-GABA neuron.

EC neurons were given a random depolarization based on the context, objects and spatial
location in which the model is situated. The contextual inputs and object-based inputs were
based on a skewed distribution which was close to zero for most neurons and roughly uniformly
distributed for the rest of neurons. The initial distribution of input currents onto input EC
neurons were given by:



global(n) = explI( - 40 x U(0,1)°) (24)

object(n,m) = expl( - 40 x U(0,1)°) (25)
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Figure 12 - Example activity level distribution of cortical inputs

Lateral EC neurons were object guided, as a result their activity was dependent on whatever
object was being attended to (see below).

IEC(n) = Irheo x IECobj x object(n,m) (26)

Or, if objects are not being used in the simulation or the IEC is not attending to objects:

IEC(n) = Irheo x IECglobal x global(n) 27

In contrast, medial EC neurons were a combination of contextual inputs and spatial grid cell
contributions.

mEC(n) = Irheo x mECglobal x global(n) x G(n,x,y) (28)

During the simulation, these input activities are input to neurons as if they are synaptic inputs.

2.3.2. Object Selection

In any given environment, there are a set of objects that can potentially be “seen” by the model.
In most of our simulations, these were constrained to a circular set of locations outside of the
path taken by the model, however our approach to assessing which object is attended to at any
given instant was not dependent on this.

Suppose (x,y) determined the position of the model at a given time, and (0x, dy) determined the
direction of the model’s path. Let (x,, y.) represent the position of an object a, then the angle of



movement 6, the angular offset of the object 6,, and the Euclidean distance to the object D,,
can be given by

0, = atan2[1(8x,3y) (29)
6, = atan2 (x-xa,y-ya)-e ix (30)
D, \/ (x-x) +(y-v,) (1)

with both 8, and 6, set to be between -7 and T.

From these, a saliency bias metric, S, was generated for object a

R
=/ 0,%02) (32)

The structure of this metric greatly penalizes objects that are distant or peripheral to the direction
of motion, and approaches infinity for those objects that are directly in the line of sight or very
close physically.

This bias metric is computed for all objects in the system, and then each is normalized by the
cumulative object saliency at that position and time. A uniform random number (0,1) is this
drawn and mapped to a CDF of those values to select an object to attend to. Objects with high
saliencies are more likely to be chosen.

2.3.3. Grid Cell Activation

The mEC neurons were given a similar random depolarization as the IEC neurons. However, as
opposed to a constant depolarization, the mEC neurons were modulated by spatial location based
on a grid cell behavior.

Prior to simulation, each mEC neuron was assigned three parameters: 4 — grid cell size/frequency
(A =3- x *1.5), 0 — grid cell rotation (0=2n*rand(0,1)), and (¢ ., ¢,) — spatial offsets for the grid
(each from uniform distribution).

W= 471/2 Ao ((cos (9 " %) +sin (9 + %)) x(x-9,)+ (cos (9 + %) - sin (6 + 112)) x(y- (Py)) (33)
K2 = 432 i ((cos (e + f—;) + sin (e + T—;)) X (x-9)+ (COS (9 * %t) - sin (9 " ?z)) b (Py)) (34)
K3 = 4?2 r ((cos (e + 34 ) + sin (e + 34“)) (x-0)+ (COS (9 * ?) - sin (9 " 3zt_n)) - (py)) (35)

2 cos (k1) + cos (k2) + cos[1(k3
G(n,x,y):?( (D 2 ( )+0.5)

3

Both the mEC and IEC populations were also inhibited by the MS-GABA input.



2.3.4. Simulations

Simulations consisted of providing constant inputs to IEC neurons to represent the current
environment, while varying the spatial location to simulate a path around a 1m diameter circle to
vary the mEC grid cell behavior. Inputs to the model are designed to examine the integration of
spatial information, which is encoded by the mEC, with object information, which is provided by
the IEC. On each simulation day, the model receives inputs corresponding to an animal moving
around a circular track within a context while observing a selection of different objects.

This study focused on testing the network’s response to two different contexts; the first context
(the “familiar” context) was previously “pre-trained” in the simulation (see Pre-training below),
and a novel context which consists of a distinct contextual input and different object-location
pairings. Novel contexts can potentially share some objects with familiar contexts, though their
spatial locations are different, and similarly mEC neurons are structured as grid cells in both,
though individual neuron activities change.

Our primary study focused on simulations of the circuit at different scales ranging from 10,000
GCs to 10,000,000 GCs. As the scaling below biologically realistic sizes is arbitrary, we used a
simple linear approach to scale down the number of other neuron populations and synapses,
maintaining the overall statistics of connectivity. For example, since in a rat DG a typically GC
has about 5,000 excitatory inputs and 1700 inhibitory inputs, a GC within 1-100 reduced model
would have only 50 excitatory inputs and 17 inhibitory inputs, each having its maximum
conductance increased by a factor of 100. Thus the ratio between excitatory and inhibitory
conductances is held constant with scaling, as are the overall physiology parameters. Notably,
for lack of strong biological quantification of synaptic numbers, the scaling above rat size to
monkey and human scales does not involve increasing the numbers of synapses further. (Note:
this assumption is intentionally conservative as our results suggest that higher synaptic densities
would further amplify the results we describe in the main text).

While the results of this study focus on a single day, this paradigm was developed such that the
model can progress through time while adding new contexts, with the model receiving inputs
representing the very familiar context, a different familiar context, and a novel context on each
day.

2.4. Implementation
2.4.1. Overview of implementation

The model was implemented in C++ with OpenMPI to enable parallelization (see Parallelization
of Model section below). All simulations were run on either the small Linux cluster “Claustrum’
which has 256 processors and 2TB RAM, or the Red Sky supercomputer, on which we used a
variable number of nodes, with each node having up to 8 compute cores and 12GB RAM.

b

By far the limiting factor in the simulation is the demand of synapses on overall system memory.
Synapses in the model were 16 bytes (B), with each synapses having representations of source
neuron (4B integer), target neuron (4B integer), maximum conductance (4B floating point),
relative conductance (1B integer), synapse type (1B integer), and immediate spike history (1B
Boolean). A major savings was achieved by discretizing the decay of synapses. For each time
constant, T, we preallocated a set of relative temporal decays in memory (e.g., 13 time steps out



with a Sms decay is 0.0743), and thus each synapse simply needed to track how long it had been
since its previous full activation began.

Neurons were 128 bytes each, with a number of floating point variables (including all the
Izhikevich model parameters). While maintaining this number of floating points was not
particularly efficient from a memory perspective, keeping these values local to each neuron sped
up computation considerably. Further, since there were typically several orders of magnitude
fewer neurons, there was little benefit in optimizing neuron size.

All calculations were performed in floating point as opposed to double precision, which both
dramatically cut memory demands but also sped up simulation time by approximately 20-30%.
In original calculations performed in double precision we saw no meaningful differences in
qualitative behavior of the model.

2.4.2. Parallelization of Model

In order to simulate the model at sizes comparable to mouse DG sizes, it was necessary to
distribute the model across many different processors (aka, nodes). Distributing large models
across many nodes presents considerable computational advantages in dividing the necessary
computations necessary for simulation and reducing the total active memory load required on
any given system. The principal downside for distribution of a model across different nodes is
the communication cost and the fact that the overall system can only go as fast as the slowest
node. These considerations imply that a well-distributed model will minimize information that
must be transferred between nodes as well as evenly parse out the computational duties such that
each node has roughly an equivalent amount of work to perform, minimizing the time that nodes
do not have to wait for the slowest node to finish.

Here, we distributed our model DG network over Np processors by uniformly distributing the
individual neurons across the nodes in sequence (neuron 1 went to node 1, neuron 2 to node 2,
etc). Because neuron IDs were sequenced based on cell population (neurons 1-100000 were 1IEC,
100001-200000 were mEC, etc), this resulted in roughly equivalent numbers of neurons from
each cell group assigned to each node. Next, each neuron’s afferent (input) synapses - but not
efferent (output) synapses — was then generated on that same node.

This distribution scheme resulted in essentially the same complements of neurons and synapses
allotted to each node. As a result, while different neurons behaved differently, the overall
population on each node was similar. As models got larger, the relative differences between the
nodes were reduced, resulting in comparable processing loads across nodes. This allowed wait
times to be minimized in the network.

Communication demands were also low in this distribution design. At each synaptic time step (1
millisecond), each node simply needed to communicate a list of the active neurons. Since
activity in the DG system is highly sparse (most neurons in the DG/EC network fire at less than
1Hz), few bytes of information needed to be communicated at each time step. Each node then
kept track of the history of activity of al/l neurons in the network over time (this results in the
same information stored on each node, but this information is highly sparse). When computing
synaptic activity, each synapse needs only access this stored firing matrix rather than accessing
other nodes.






Table 1 Neuron parameters
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Table 2 Connectivity parameters
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3. BIOLOGICAL SCALING OF NEUROGENESIS

Our primary effort in assessing our computational model of neurogenesis focused on examining
the relationship of model scale on the overall impact of different rates of neurogenesis in
response to familiar and novel information. While the presence of neurogenesis in the adult
human hippocampus has been convincingly demonstrated and quantified using several methods ;
the functional relevance of new neurons is heavily debated. Neurogenesis has been shown to
have a clear relationship to both cognitive function and anti-depressant efficacy in rodent models
. While these functions have been linked to the human dentate gyrus , the direct link of
neurogenesis to these functions in humans has been limited to conjecture due to the
impracticality of direct causal manipulation of the system. Further, because neurogenesis, like
most neural processes, has mostly been characterized in animal models, the relatively low rates
of neurogenesis coupled with the overall large scale of human networks has led to persistent
skepticism of the cognitive and therapeutic implications of human hippocampal neurogenesis.
To investigate the computational potential of neurogenesis at biologically realistic scales, we
utilized both our high fidelity model and abstract models to ascertain how increase cell and
synapse numbers affect computation.

3.1. Biologically Realistic Model Network Scaling

Most models of neurogenesis have used considerably reduced network sizes to study the effect of
neurogenesis, and while these models have shown effects of neurogenesis, recently we posited
that scaling models down would potentially occlude many of the potential effects of young
neurons due to the effects of noise at small scales. To assess this, we performed a scaling study
of DG networks for sizes from 1000 GCs (the network size in our previous study) to human sizes
of 10,000,000 GCs (Figure 13). Our scaling was linear, which while not optimized is typical for
most reduced biological network simulations. We further examined a range of neurogenesis
rates, measured by the percentage of neurons at less than 2 months of age, from 0% (no
neurogenesis) to the equivalent of about 1% a month .

First, in response to increasing network size, we observed that only in networks with substantial
neurogenesis did we see maintenance of overall network activity. In contrast, in networks
without neurogenesis we saw a substantially diminished firing rate. This pattern was clear in
response to familiar inputs (Figure 13), but was particularly striking for novel inputs (Figure 13).
This dropoff in activity was dramatic, with mature-only networks seeing a drop of activity by a
factor of 10 in response to familiar information and nearly a factor of 100 in response to novel
information.
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Notably, we observed that this effect of neurogenesis on network activity is almost entirely due
to the relatively high firing rates that immature neurons maintain regardless of overall network
size. For instance, in a network of 25,000 neurons, in which all are mature, the overall firing
activity can be seen to be fairly robust (Figure 14). If the network is neurogenic, and as such a
subpopulation is immature, the overall activity is not all that different, and the relative
contribution of young neurons is not immediately clear (Figure 15).
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On the other hand, if much larger networks are considered, wherein the overall activity is
substantially lower due to the scale of the system, while the mature-only networks are quite silent
(Figure 16), the effect of young neurons in neurogenic networks stands out considerably (Figure
17). Even though young neurons only make up a fraction of the overall population in each of



these examples, they comprise a substantial fraction of the overall active population in realistic
scale systems in response to both familiar (Figure 18) and novel inputs (Figure 19).
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3.2. Abstract model of network scaling

The observation that scale dramatically increases the potential impact of new neurons on DG
computation is not necessarily intuitive. Indeed, across the full animal spectrum, as brains have
evolutionarily gotten more sophisticated and, accordingly, larger, the overall extent of
neurogenesis has decreased considerably. While neurogenesis in very simple invertebrates is not
well characterized, it is quite pronounced in very simple vertebrate brains such as fish and



reptiles. Birds have less neurogenesis than cold-blooded animals, however their neurogenesis
appears somewhat more extensive than mammals, in which it is limited only a handful of regions
including the DG. So why would neurogenesis be uniquely more critical in larger regions such
as the DG in rodents? And further, why would it persist in humans and other animals whose
brains are orders of magnitude larger?

One possible reason for the retention of neurogenesis in a dense region such as the DG is purely
statistical. As the entry region of the hippocampus, which is responsible for episodic memory,
the DG has a need to respond to both novel and familiar information. Getting a population of
neurons to respond predictably and appropriately to novelty is actually a somewhat challenging
task, as by definition novel inputs are previously unseen and thus cannot have been learned. This
statistical challenge is fundamental to understanding why advanced cognitive neural systems
operate at the scales in which they do; at small scales, as defined by the number of synapses on a
typical neuron, noise in the distribution of synapses that are active at any given time is sufficient
to drive neurons that are on average hyperpolarized due to inhibition. This noise driven activity
is bad for the same reasons that are outlined in the introductory discussion about the balance of
stability and plasticity in neural systems; if a neuron is trained to respond only to a subset of
potential inputs, it should be robust against noise and not respond to non-trained events.
However, the easiest solution for this — increasing the synaptic density such that noise is no
longer sufficient to drive neuron activity — is actually detrimental to acquiring new information
on those neurons onto which one wishes to train with novel events.
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Figure 21 - Effect of synapse number on noise tolerance of neurons (from Li et al., 2012)

In an effort to continue exploring the effects of scaling on neural activity in a simple model
framework, we worked with the Wadiche lab at University of Alabama-Birmingham to produce
a simple model of the effects of neural synapse density on the dynamic range of pattern
separation in a simple DG model. The model and results below are adapted from this
collaborative effort.

3.2.1. Simple model methods (adapted from Deini et al, submitted)

Estimating Perforant Path Connection Densities in Slice




To estimate the number of intact synaptic connections onto mature and immature neurons in
slice, we fit a basic statistical model to data provided by our collaborators describing the
increasing correlation between a pair of neurons as excitatory drive current is provided. Given a
pair of neurons, the number of expected shared inputs (Ngpareq; 1.€., source fibers both neurons
receive an input from) and independent inputs (Nj,g; i.€., source fibers unique to one of the
neurons) can be given by

Ntotal
Nshared = N x Ntotal (3 7)
Nind = Ntotal - Nshared (3 8)

where Ny, is the total number of functional synapses on a GC (from that projection) and N, is
the total number of potential input fibers. Supposing a stimulation of the fiber bundle activates a
fraction p of the total inputs, one can derive the probability that both GCs are activated by the
following equation based on binomial probabilities:

Poverlap =1- (1 - (1 - (1 - p)Nind)Z) X (1 _ p)NShared (39)

where the left term represents the probability that both GCs are not independently receiving input
from source fibers that are uniquely sampled and the right term represents the probability that no
shared fibers are active.

Based on data from our collaborators, we used the constraint that the ratio of intact synapses on
young neurons to mature neurons is 0.35. Further, we constrained the Ni,g mature t0 be no more
than five times Ngpared mature- G1ven these constraints and the measured values for mature and
immature neurons in Figure 4, we performed a Monte Carlo search of 250,000 combinations of
three independent parameters: 0.001<p<0.004, 20<Nind, mature<100 and 100<Nghared. mature <500,
identifying which set of parameters produced a good fit with error defined as

2
err = \/Z(Pestimated,stim - Pmeasured,stim) (40)

stim

where Pegimated»stim 18 the output of equation (3) and Peasured»siim r€fers to the measured overlap for
a given stimulation level in Figure 4B. Notably, there were a number of solutions with
approximately equivalent errors for which we selected p=0.0039; Ning mature=182; Nsnared mature=3 7,
with a cumulative error (when compared to both immature and mature physiology data) of
0.1794.

Simple neural network model

We generated a simple perceptron-based neural network model of the entorhinal cortex (EC) to
dentate gyrus (DG) circuit similar to that used in . The model consisted of 400 simple granule



cell (GC) neurons and 1300 EC neurons (based on the estimate from our neuron fitting above).
Each GC neuron was either considered mature or immature and randomly connected to neurons
in the source EC population based on the frequencies determined above. Any connection
resulted in a synapse of weight 1, and there was no learning or inhibition in the network.

For each trial, a fraction of EC neurons, EC,, was randomly activated (set to equal 1). The
downstream GC neurons were then considered active if their input surpassed their threshold,
which was defined as a fraction of their synaptic inputs being co-active.

GCinput = EC X Weeoae (41)
1 ifGC._ >0.2xN
GC — mput — synapses
output {0 otherwise [ (42)

We tested each network on 100 sets of random EC inputs, and then computed the average
overlap between GC outputs, which is given by

100i-1
1 : Gcoutput,i 0 GCoutput, j
o5 Y'Y @
50> 99 4 1GCyp i IGC 0

output,i output, j

We examined networks that were either 100% mature, 70% mature, or 100% immature. We
further tested a series of different EC activation fractions.

3.2.2. Results of simple synaptic scaling model (adapted from Deini et al., submitted)

To isolate the contribution of excitatory drive, the model above did not include inhibition and we
assumed that the same aged GCs have equivalent number of synapses that are sampled from the
same total set of perforant path fibers. Furthermore, we did not consider probabilistic synapses.
We constrained the ratio of excitatory drive (modeled as the number of synapses) to immature
GCs according to the average ratio that we measured in simultaneous recordings of immature
and mature GCs over a large range of stimulus intensities (0.35). Using a fitting approach
described in the Methods, for MML stimulation, we observed strong fits with a pyinima; 0f 0.39%
and N, of 1,296 fibers. For mature GCs, we estimated an average of 219 MML inputs, of which
37 were shared between pairs of neurons, and for immature GCs we estimated 77 inputs, of
which 5 were shared (note that this analysis is meant to replicate our experimental paradigm
rather than to recapitulate synapse number based on authentic anatomical estimates). We then
artificially generated networks with a hundred randomly generated neurons obeying these
statistics, and observed that the randomly connected neurons exhibited comparable overlapped
activation as observed experimentally (Figure 22).



Figure 22 - lllustration of independent (blue and green) and shared (red) synapses

Figure 23 - Fit of synapse estimation model with real dual recording data

Next, we generated a simple network similar to that used in to emulate DG function (Figure 23),
whereby different GC neurons had connection densities representative of either all mature, all
immature or a mixture of 70% mature and 30% immature GCs. These networks shared input
connection statistics comparable to the observed slice results; however each GC only fired if
20% of their inputs were active. Using this approach, we could observe how an increase in input
similarity would affect the presumed pattern separation of random EC inputs.
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Figure 24 - lllustration of mixed immature and mature simple spiking model



Figure 25 - Increasing immature neuron population expands dynamic range

MODP Overlap
o o o2 o 2 o o o
oW B m M @ B -

o

0.1 012 0.14 016 018 0.2 0.22
Percent mEC neurons activated

Figure 26 - Zoom in on expanded dynamic range

Consistent with previous modeling studies, networks with young neurons exhibited higher
correlations (i.e. reduced pattern separation) than networks without neurogenesis so long as the
input activity was on average below threshold for GCs to fire (Figure 24). However, the response
curve of the mature only networks was quite steep; if EC activity was well below threshold, the
mature-only DG was exceptional at pattern separation, but once threshold was approached, the
network quickly became ineffective. In contrast, networks with immature neurons more
gradually increased their activity as the overall input activity approached the neurons’ threshold,
suggesting that young neurons make the DG less sensitive to local changes in input statistics
(Figure 24). In other words, addition of immature neurons with reduced excitatory drive was
sufficient to expand the dynamic range of the dentate network for effective pattern separation.

Our results can be incorporated into a broader view of the DG’s function in hippocampal coding
. If the DG is to be relevant in driving CA3, it is necessary that its outputs have some low level
of activity — perfect separation is meaningless if no information is communicated. Even a very
low activity level necessitates some minimal level of neuronal overlap, however too much
overlap presumably leads to interference in CA3 memory formation. In our simple model,
maintaining GC activity within a range such that its correlations stay between 0.5% and 5%
requires that the EC’s activity level can only be tolerated within a range of about 1%. In contrast,
the presence of immature neurons essentially doubles the permissible range of inputs, and further
shifts the ideal range further away from the critical threshold level; minimizing the risk of
incidentally stronger inputs of producing a severely disruptive signal (Figure 25). The presence



of a subpopulation of neurons with fewer excitatory inputs is capable of increasing the dynamic

range of the EC suitable to be processed by DG, suggesting network heterogeneity can provide a
form of input normalization in addition to the effects of feed-forward and feedback inhibition in
the circuit.






4. METRICS TO ASSESS NEUROGENESIS FUNCTION

The results described in the above section about the increased activity of young neurons is
consistent with previous observations, but activity alone does not resolve the functional
importance of neurogenesis. In particular, there is considerable debate about whether the activity
of young neurons directly contributes to the DG pattern separation function or whether their
impact is to increase information content in episodic memories (Figure 26). These two ideas
have been discussed extensively in the literature, but there has been little attempt to develop
metrics to quantify how an ensemble of neurons may provide either a pattern separation function
or be increasing information content sent into the hippocampus. Most studies on the pattern
separation ability of the DG have focused on looking at average correlations of the output
population as compared to the correlations of an input layer. This reduction in similarity is
typically measured without reference to the overall information encoded in the system. For
example, if the EC contains substantial information about two events that may have occurred at a
park, is it sufficient for the DG to simply encode only one feature that may have differed
between the two events (say one had a dog involved and another a cat)? While this is potentially
optimal from a pattern separation perspective, it would potentially trivialize the ultimate memory
formed. Rather, the DG likely needs to maintain a balance between information coding and
separation; effectively minimizing correlation between DG outputs is likely best thought of as a
constraint as opposed to a function in and of itself.

This more sophisticated view of DG function requires both simultaneously assessing DG
information content and correlations in a quantifiable, parametric sense. While there are a
number of techniques to assess similarity (correlations, cosyne angles, Hamming distance, etc),
the ideal metric is not immediately obvious, as this is likely going to be a function of how
network similarity impact the downstream CA3 region. Further, the quantification of
information content is a major challenge in systems neuroscience. Examining the nature of
information representation in a model of thousands or millions of neurons requires the
development of new approaches to ascertain the information content of large populations of
neurons. While techniques exist for application of Shannon information approaches for single
neurons, the primary challenge in quantifying information in a network is how to combine
neurons, which are non-independent information channels .
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Figure 27 - lllustration of two functions of DG

We approached this problem by identifying compression methods used broadly in computing as
a potential route to quantify the redundancy in the network representation over time, thus
providing an estimate for independent information communicated by a network. Compression
can take a number of different forms. Here, we were concerned with /ossless compression,
which guarantees that the inputs are fully retrievable from the outputs (i.e., no information is lost
in the compression process), at the possible expense of a suboptimal compression. The
alternative - /ossy compression — is widely used in file formats such as TIFF images and MP3
audio files works by allowing information that is not perceived by the end user to be eliminated
as well, which typically results in a more compressed signal, but one which contains less
information than the original source. For the purposes of our neural analysis, we are concerned
with obtaining an estimate of total independent information content, which lossy compression
will fail to provide.

There are a number of methods for lossless compression. Here, we explore two possibilities that
can provide initial estimates for network redundancy and thus overall information content. The
first is a linear method similar to principal components analysis (PCA). The second method is a
digital compression approach known as Lempel-Ziv, which is widely used in file formats such as
GIF image files and can be linked theoretically to Shannon entropy.

4.1. Linear compression analysis

Our first method used linear decomposition to estimate the extent to which our observed
population activity was redundant. The idea behind linear compression is that identifying a
reduced set of dimensions that represent the bulk of the data is much cheaper to transmit and
store than the full data set. PCA works by rotating (and scaling) the dimensions of the original



data set into a basis that maximally explains the variance of the data present originally. Those
dimensions of this new basis set comprised of the principal components are then selected to
represent the compressed signal.

The intuition behind using PCA on neural data can be described in a number of ways. Suppose a
subpopulation of neurons is highly correlated in their activity, one way to more efficiently
represent their activity is to imagine a single virtual neuron which responds as an average of that
group. This virtual neuron can be thought of as the first principal component of the population.
Next, a new second virtual neuron can then be generated that represents the difference between a
subset of the original individual neurons’ activities and the new virtual neuron’s activity (the
residual activity). Now these two virtual neurons, or two principal components, are orthogonal
to each other and likely represent a good fraction of the overall network activity. This process
can continue on until all the residual activity is accounted for in the virtual neurons. Because
these virtual neurons are representing averages of many neurons’ activities, they are effectively
compressing much of the population’s responses into a much smaller number of dimensions.

PCA can thus be used as a compression method; it is often common to ask how many of the top
principal components are necessary to represent 95% of the original information. Generally,
however, PCA is lossy — unless there are some entirely redundant initial channels, PCA will not
allow the removal of dimensions without sacrificing some of the original information. However,
by considering how much information was moved from the original dimensionality into the
primary new dimensions - effectively how much compression PCA could provide, we contend
that we can estimate how much redundancy is in the original data.

4.1.1. Method

Suppose S is an N x T matrix of the spiking output of a population of N neurons over 7 time

steps. First, we collapse S into a temporally compressed N x ¢ matrix A, where each column
represents the binned firing output of the N neurons over sequential 25ms timesteps (t equals
T/25), normalized to a mean of 0.

Let V equal a matrix of size ¢ x ¢ of all eigenvectors of the covariance matrix of A, which we call
ATA, with their associated 7 eigenvalues {4;} and let 6?; equal the variance of each column
within A (variance of all neurons’ firing over a given time bin). We will consider the cumulative
variance of the network, which can be computed as

QDo (44)

which simply indicates that the sum of the eigenvalues of ATA is equivalent to the sum of
diagonals of ATA, a property of symmetrical matrices.
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Figure 28 - Example covariance matrices of model activity. Left is EC, right is GC layer

This equivalence confers an interesting property with regard to measuring how redundant the
component vectors of A are. Essentially, matrix decomposition transfers covariances between
dimensions until that the new basis is orthogonal. The extent to which variance needs to be
moved in order to obtain diagonality (the eigenvalue matrix) is an indicator of how orthogonal
the original matrix was. By quantifying the difference between the distribution of A’s and 6?’s,
we can estimate how much variance had to be transferred into other dimensions to orthogonalize
the matrix. This is essentially a measure of how compressible (linearly) the original data is with
PCA.

Let the vectors of A be ordered by increasing variance o2, and let the eigenvector matrices D and
eigenvalues vector A be ordered by increasing eigenvalues 4. Then, we can define a measure, @,
as the estimated linear compressibility of the matrix as follows:

to]

@_22(22) /Zcft (45)

i=1

The extremes are illustrative. If A is orthogonal, ATA will be diagonal and the eigenvalues A’s
will be equivalent to the variances, 6%’s, of A. In this case, ® will be zero, indicating that A is
not compressible and fully separate. At the other extreme, if A is entirely redundant such that
the signal does not change from one time bin to the next, then @ will approach one (specifically,
2*(t-1)/t) as the number of independent time vectors are increases. If @ can be taken as a
measure of the linear redundancy of A, then the extent of the total activity of A, f4, that is not
redundant is a metric of independent information represented by A, which we define as ¥.

y=(1-0)xf, (46)
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Figure 29 - Example principal components compression estimation.
Left is EC, right is GC

4.1.2. Results

We analyzed both pattern separation and memory resolution in the neurogenic and non-
neurogenic simulations at different scales by quantifying the proportion of redundant variance in
the GC outputs in response to familiar and novel inputs (Figure 2f-g). Notably, increased levels
of neurogenesis did not appreciably increase correlations in GC activity (i.e., did not impair
pattern separation) by this measure; an observation that differs from our previous model which
suggested that young neurons increased coding similarity, a process we referred to as pattern
integration . In contrast, it appears that neurogenesis slightly improved overall network
orthogonalization, a result somewhat consistent with the pattern separation interpretation of
behavioral results. Further, the addition of neurogenesis greatly increased the non-redundant
communication by the DG, a feature which would be expected to subsequently improve the
ability for behavioral discrimination of memories (Figure 2h-i). These two results suggest that
the behavioral improvements through neurogenesis are due to its facilitation of increased
memory resolution while preserving the DG’s overall pattern separation role.

4.2. Digital Compression
4.2.1. Lempel-Ziv & Normalized Complexity Analysis

Lempel-Ziv (LZ) coding is an online, adaptive class of techniques for source coding . It consists
of adaptive dictionary compression algorithms which are universally optimal in that their
asymptotic compression rate approaches the entropy rate of the source for any stationary ergodic
source . Rather than building an optimal coding based upon known a priori knowledge of the
frequency of occurrence of the symbols being encoding (such as Huffman coding does), the LZ
algorithm parses a string and builds dictionary entries based upon the shortest phrase not yet
seen. Repeated sub-strings result in larger dictionary entries, so effectively the LZ algorithm is
able to dynamically generate more efficient representations for the most prevalent sub-strings.

Applied to the neural domain, this approach allows us to analyze the encoding of neural
ensembles without knowing firing behavior probability distributions of each neuron. Rather, we



have used complexity as a measure of compressibility in order to estimate entropy to
quantitatively assess the information content of a signal. Szczepanski et al. applied the general
Lempel-Ziv complexity (LZ-Complexity) measure to estimate entropy of real and simulated
neurons . But unlike the work of Szczepanski et al., rather than applying LZ-Complexity analysis
to an individual neuron's spike train; we have applied the approach to a neural population as a
whole. LZ-Complexity is based upon measuring the rate of generation of new patterns along a
sequence of characters in a string being compressed . Applied to neuron spike trains, this
technique looks for repeated spiking behavior over time. Instead, by applying it across an entire
neural ensemble, we assessed repeated patterns of neural activity.

We have explored a couple of approaches to analyzing the multidimensional signal comprised of
an ensemble of neurons firing over time. Our first approach was to take the co-activity of all
neurons in the ensemble at an instance in time and concatenate each of these temporal segments
into a single spike signal. This approach is depicted in Figure 29.

[ ---0000100000001000011010000001101100011000110011001000000001000011111 --- |

Figure 30 - Concatenation of neural firings across the population ensemble to generate a
binary spike signal preserving temporal synchrony

Alternatively, rather than concatenating each segment into a single spike signal we also
investigated a piecewise analysis in which a single segment (whether temporal or ensemble) at a
time is passed to the dynamically expanding dictionary. An illustration of this approach is shown
in Figure 30. Using this piecewise approach, the same dictionary is repeatedly utilized and
updated with each segment presented. However, dictionary entries cannot span different
segments (as is the case with the concatenated single spike signal).
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Figure 31 - Temporal piecewise segmentation of of neural firings

Regardless of which approach is used, the spike signal is converted into a binary signal where an
action potential is encoded as a one and the absence of activity by a zero. The normalized
complexity may then be computed as follows:

WGl
¢, (x)= - * log (1) 47)

Normalized complexity measures the generation rate of new patterns along a word of length n
with letters from an alphabet of size a (in this case two). Additionally, it can be proven that as
the string length (our series of neural firings in this case) goes to infinity, the supremum of the
normalized complexity approaches the entropy of the signal S:

lim supc (x") <H  (S)C (48)

n—oo

Consequently, this provides us with a technique to approximate the information content encoded
within a neural ensemble as expressed by the firing behavior the neurons exhibit.

4.2.2. Approximate Function Understanding Through Sampling

As a simplification overlooking the vast intricacies involved in their operation, neural behavior
may be described as a function. Neurons fire in response to input stimuli which are able to drive
the potential of the neuron beyond threshold. Ignoring the complexities of various learning
mechanisms which facilitate the dynamic modification of neural responses to a given stimuli, the



behavior of a neuron is a functional response. Each neuron yields a mapping from inputs to its
functional output (namely whether or not to fire). As a simple, yet related, mathematical
expression consider the canonical Boolean function. As the fundamental basis of digital logic
and computing Boolean functions describe the behavior the function exhibits over all possible
binary inputs. This is typically represented by a truth table such as that shown in the upper left of
Figure 31. In this example, there are three inputs (A, B, and C) which allows for eight possible
binary permutations. Three arbitrary Boolean functions of the inputs are defined by the columns
Ni, N, and Nj. In a small idealized scenario such as this, it is tractable to furthermore specify the
minimal functional representation as well.

In the neural domain this idealized analysis is not possible. In general neurons typically have
10,000 input connections. Even for a single neuron with binary synaptic connectivity, it is not
tractable to consider 21900 possible unique input permutations. Rather, whether in a
computational neural model or physiology recordings one can only sample the neural response
behavior over a small subset of the possible space. This is analogous to only sampling a subset of
the full Boolean truth table such as the selection of the red boxes leading to the breakout table
show in Figure 31.

I T T T S T
0 0 0 0 1 0
0 0 1| 1 0 0
0 1 0 1 0 0
0 1 1 0 0 0
1 0 0 0 1 1
1 0 1 1 0 1 N, N, N,
1 1 0 1 0 1 1 0 0
1 1 O 0 0 1 0 1
N, = BC + BC 1 0 4
N, = BC 0 1 1
_ _ 0 0 0
Ny = AB + AC

Figure 32 - Truth table for three input Boolean functions and an observational sampling

Without complete knowledge there are limits to what information may be inferred from this
sampling. For example, in conjunction the three Boolean functions (N, N,, N3) have five unique
response patterns over all possible inputs (000, 010, 011, 100, and 101). But the arbitrary
sampling shown only captures four of the five possibilities and cannot completely infer the full
functionality encoded by these Boolean functions. Rather, one can only estimate the behavioral
properties of the combined function. Compression analysis, as previously described, is one
means of inferring the complexity of the functionality and in effect estimating the encoding of
the composite function. How well the functionality may be inferred also depends upon the
sampling provided.



This is the exact same limitations imposed by the neural domain. Rather than having absolute
knowledge of the inputs and outputs of all neurons over the full set of possible permutations,
instead a typical neural recording is analogous to the breakout table in Figure 31.

4.2.3. Control Study Experimental Paradigm

As a control study to investigate the accuracy of our information estimation method, we have
implemented an experimental paradigm which allows us to vary neural input resolution to
control what the information content of the ensemble should be. Our analysis technique is a
general technique and not specific to any neural region, but for our experimental paradigm we
are examining information encoding within the dentate gyrus (DG), with the input to the DG
comes from entorhinal cortex (EC. Grid cells of the EC encode a path trajectory through space
and serve as the inputs to the DG place cells. By varying the precision of the DG grid cell
encoding of the input space we can define to what fidelity the neural encoding is able to
distinguish the input path. This notion is captured in the upper portion of Figure 32. The top
square of the figure illustrates an arbitrary trajectory through space. The middle three squares
portray DG grid cell encodings of various fidelities. As can be seen in the leftmost square with a
resolution of four (partitioning the space into fourths along each dimension), this low resolution
cannot distinguish between the twists and turns of the trajectory. Rather, anytime the input path
lies within the region that grid is activated. Conversely, the higher resolution partitioning of the
space (such as that shown by the other two samples) encodes a higher fidelity representation of
the original path allowing it to distinguish precision such as the large loop in the upper right
quadrant. As a result, the increased resolution provides more information in the sense that you
are more certain about the precise position in physical space.
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Figure 33 - Control Study Experimental Paradigm

The various grid cell encodings then serve as the input to DG place cells whose firing activity are
the neural samplings we are interested in analyzing for information content. In this paradigm, the
DG place cells are randomly placed topologically. And additionally, each place cell has a field
width parameter which dictates the extent of which inputs are able to drive it to fire. The bottom
portion of Figure 33 illustrates various configurations of place cell widths corresponding to
encoding schemes. The leftmost example corresponds to a neural ensemble consisting entirely of
mature, tightly tuned neurons that respond to precise inputs. Conversely, the middle example



illustrates a neural ensemble consisting solely of broadly tuned neurons which respond to a broad
set of inputs. The rightmost example portrays a mixed coding scheme, such as that hypothesized
by neurogenesis where young neurons are broadly tuned and hyper receptive, but as they mature
become tightly tuned to respond to specific inputs.

This experimental paradigm allows us to generate neural spiking outputs which we can then run
our compression techniques on to approximate the information content in a controlled manner.

4.2.4. Results

For our assessments we have primarily analyzed an ensemble of 500 randomly placed neurons
over 10,000 timesteps. Figure 33depicts one path intended to loosely resemble Brownian motion
across the space. Fig. 6 illustrates the resulting firing rates of these neurons over this path for
resolutions of 4 and 100. With fairly narrow place cell widths, only neurons closest to the active
grid location are driven to fire. Consequently, as can be seen in the top half of the figure, the
neurons which happen to be located central to grid positions with the coarse binning resolution
of four fire frequently. Alternatively when the resolution is much finer, such as captured in the
lower half of the figure, a lot more neurons fire, but less frequently. In this sense, the neural
encoding of the path is distributed across multiple neurons and has the ability to represent more
information.

Figure 34 - Sample random path over 10,000 timesteps
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Figure 35 - Ensemble firing rates for resolutions 4 and 100




Keeping the neuron positions, path, and place cell widths fixed for a given analysis we have then
varied the resolution and estimated the information content based upon the observed neural
firings. The resolution of the EC grid cell encoding provides a theoretical upper bound as to what
precision the compression analysis approximation can estimate - namely log,(resolution?).
However, not all paths fully cover the space nor do they cover each region uniformly. And so a
more precise theoretical upper bound may be computed for a specific path by using the
frequency of occurrence of a particular resolution region as the probability of the event that that
particular region will be active. Treating the regions of space as outcomes, these frequentist
inferences allow us to calculate the actual entropy of a specific path through space as a
straightforward calculation.

Applying this compression analysis of neural information content yields the approximations
captured in Figure 35compared with the theoretical information content upper bound (shown in
red). Across the x-axis are increasing resolutions from 1 to 10, and the y-axis is the information
estimate (entropy).
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Figure 36 - Ensemble Entropy vs. Theoretical Upper Bound

While the normalization technique needs to be modified to account for our piecewise LZ
presentation approach, the general trend exhibited by our estimations appears promising. In the
absence of a corrected normalization technique the values themselves are not meaningful, but we
have also applied the approach to ensembles of mixed place cell widths to investigate the effect
on information content with a mixed coding scheme. As follows are results of varying the mix
ratio all with a path resolution of 10 and fixed neuron positions and path for all experiments. In



each of the charts, the place cell width listed along the rows is the majority cell type with the
resolution at the column intersection corresponding to the mixed in minority cell type. For
example, in a given row column intersection with a five percent mix there will be 475 neurons

with place cell widths given by the row and 25 neurons with that given by the column. The main
diagonal of each table corresponds to a pure coding at a given resolution.

5 % Mix
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Figure 37 - 5% Mixed Coding Results
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Figure 38 - 10% Mixed Coding Results
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Figure 39 - 25% Mixed Coding Results
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Figure 40 - 50% Mixed Coding Results

In addition to applying this compression analysis approach to our control study experimental
paradigm, we have also applied the concatenated string of ensemble firings approach to large
scale neural models. See for more information.

4.2.5. Conclusions & Next Steps

We have presented a general approach to analyze the encoding of neural ensembles by using
complexity as a measure of compressibility in order to estimate entropy to quantitatively assess
the information content of a signal. Variations to this class of compression analysis of neural
information content include:

Contiguous string vs. piecewise segments

Ensemble & Temporal segments

Pre-populating the LZ dictionary with all possible zero permutations to focus only upon firing

Mixed coding ensembles



Our next steps for this research include:

The LZ77 algorithm (Sliding Window) may yield different results than LZ78. In characterizing
the application of the LZ class of algorithms will there be benefits to applying each in different
scenarios such as ensemble vs. temporal segments? The discrepancies between these algorithms
needs to be investigated as well as the potential application of other online compression
algorithms.

e Performing sensitivity analysis sweeps over parameters such as the random path, neuron positions, and
place cell resolutions.

o Investigate whether there is any fundamental difference between segmenting by time versus ensemble.
Ultimately the full ensemble space is covered with either partitioning approach.

e  Shuffle the order of neuron position's to see effect on resulting LZ dictionary.

o Investigate repeated presentation of neural firing signal.

e Extend the general approach to account for noise in neural firings.

e  Update the complexity normalization technique to account for piecewise presentation. Richer insights may
be available from analyzing the structure of the dictionary tree such as how balanced it is as well as path
lengths rather than only looking at its size.



5. ALGORITHM DEVELOPMENT FROM
NEUROGENESIS THEORIES

The ultimate goal of our project was the development of novel algorithmic strategies to address
potential mission area challenges using the observations made from studying the neurogenesis
process. We pursued two areas as potential application impacts of neurogenesis, the use of new
neurons in making existing machine learning model adaptive over time, and the use of a
neurogenesis-like process to facilitate compressive sensing.

5.1. Continuous adaptation of models

While machine learning and ANNSs utilize neural terminology and allude to concepts such as
learning, in reality most of these methods lack substantial capabilities to update models
continuously or online; rather these methods typically involve the generation of a data-driven
model based on a set of (typically labeled) data at the onset, train using that data, and then deploy
in a fixed condition. If the statistics of the relevant world changes; the originally-developed
model loses some degree of utility. Once conditions have evolved substantially, usually the
necessary investment in a new model framework is made.

5.1.1. Model evolution formalism

Suppose a model, M, exists and is based on data about some condition in the world W4 acquired
at T=0. Notably, this model is actually based on observations of the world, D, which is, of
course, a limited view of what the world actually is. This model, M,, is designed such that if a
new set of data, d(t), arrives, the operator can make some prediction p based on the learned data
D4 and implicitly the underlying world W

Figure 41 - Relevance of data-driven models after world changes considerably



Our challenge is what to do if the world changes. In particular, how should our model M be
updated when we know that the world has changed at some rate over time? In the case of a
machine learning classifier, such as deep learning, this could be as simple as the objects under
investigation experiencing context drift (e.g., the appearance of planes has changed somewhat
over the last 100 years); or it could be as sophisticated as a major shift in how agents in the world
interact with each other in a model of global dynamics.

5.1.2. Abstract example of neurogenesis-inspired online plasticity algorithm

Here, we will review a sampling of several key types of neural plasticity that touch on several
different time and influence scales. We will describe these mechanisms here in the context of a
simple linear separation model, which can be thought of as a very simple approximation of a
neuron.

(49)
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otherwise

In this direction, a primary research goal would be to determine how best to generalize these
techniques to more complex mission relevant models.

The dominant form of continuous adaptation of neural system involves the dynamic alteration of
the strength of the connections between neurons (i,e., synaptic weights). In our simple linear
model example, the synaptic weights would relate to a; and a,. Suppose that after the model is
initially generated (Figure 41a), new information arises from an SME or other source for which
the original model is no longer adequate. While in this trivial case one could simply recompute
the ideal discriminator (a technique that does not necessarily work in more complex models) the
synaptic plasticity method would dynamically update the weighting parameters (e.g., lowering
aj, increasing a,) to refit the model continuously (Figure 41b).
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Figure 42 - lllustration of neural plasticity based algorithm to impact classification



One concern with updating conventional models in this manner would be the attribution of error
due to novel data across all possible parameters (this relates to the vanishing gradient problem in
traditional backpropagation learning), particularly in a dynamic setting where the value of the
new data is unknown. We foresee three brain-inspired modifications alleviating this concern in
our work. First, unlike most models, neural synaptic weights are multi-dimensional; effectively
some synapses are more sensitive than others to new information than others, and this sensitivity
is itself a state that can vary over time. This relates to directly to trust; if a single datum from a
suboptimal source arises that challenges as trusted parameter, a key parameter should not
necessarily drift. Second, we anticipate that neural reinforcement learning mechanisms can be
used to retroactively harden, or anneal, those parameters whose recent changes produced a
desirable behavior. Finally, in order to keep the models from overfitting to new data, we plan to
leverage sparse optimization techniques to direct dynamics of the model to the fewest number of
parameters that produce the desired outcome, which is consistent with how the brain distributes
information across its synaptic parameters.

A bigger challenge arises in both real neural systems and conventional models when new
information is presented that makes the previous model inadequate. Figure 41c shows an
example where the linear separation is no longer possible in the two dimensions on which the
data is projected. For such data, techniques such as the kernel trick employed by support vector
machines (SVMs) are often effective at allowing discrimination in a higher dimensional space.
Alternatively, the brain uses techniques such as synaptogenesis (creating new connections) and
neurogenesis (creating new nodes) to address this problem. Suppose a third dimension to the
data exists that previously was unnecessary for the discriminator, but as new data arises, it
becomes useful in forming the discrimination. In this example, the generation of a new
parameter or connection in the model (considering x; in addition to x; and x;) allows a separation
plane to be formed that returns the model to an effective state (Figure 41d).

Beyond a few specific algorithms built around the concept (such as Adaptive Resonance Theory
[ART] networks), the concept of structural plasticity is not widely considered in machine
learning. Nonetheless, there is growing evidence that this is one of the most potent mechanisms
the brain uses for adapting itself over time, particularly in response to substantial shifts in data
representations . Clearly, this is a much more challenging technique to integrate in a model in
order to preserve stability, so the major research challenges faced will involve not only
developing methods to implement it in other model types, but also identifying which model
structures permit this form of plasticity and, related, whether and features of the original data
may indicate that this form of plasticity will be required.

5.2. Compressed Sensing

Detection of familiar faces or interesting objects in images or video is a task that humans can do
better (faster and more accurately) than computers . More generally processing of sensory input
in the context of memory formation and recall is managed much more efficiently in biological
systems. With respect to images, we can and do build cameras with increasing levels of
resolution. These devices do indeed produce visually appealing images, but are they really an
efficient use of technology? A technique called compressed sensing has been developed to
reduce the amount of raw data necessary in producing an accurate image . In fact compressed
sensing has been used to develop a one-pixel camera and compared with mega-pixel images
from typical commercially available cameras . These results demonstrate the use of more
efficient image construction using random sampling below the Nyquist rate, specifically in cases



where the images being reconstructed are sparse or compressible. Ganguli and Sompolinsky
describe how compressed sensing might be used in the brain to facilitate both compression and
expansion of neural firing patterns . In this document we will describe how the unique structure
and location (both physically and functionally) of the hippocampus and its components can
facilitate compressed sensing during episodic memory formation and recall. We will also
describe a neural-inspired algorithm to address the problem of efficient sensory data fusion, in a
“big data” setting.

5.2.1. Assumptions

In this section we will describe several key assumptions we are using throughout this document.
First, we assume a major function of the hippocampus is memory formation and recall. The kind
of memory we are interested in in this paper is that which involves the hippocampus, which can
be either episodic or spatial memory formation and recall. In this paper, we will not address other
types of memory or memory systems in the brain, such as procedural memory. Another
assumption we will use in this paper is that fact that the hippocampus receives input from other
cortex through the entorhinal cortex (EC) and then returns its output back to the EC. This
specific neural formation from EC through the hippocampus, generally to the DG then through
regions of the cornu Ammonis (CA), at least CA3, and finally either directly or through the
subiculum back to the EC again, forms a loop, partially shown in Figure 40.
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Figure 43 - Simple flowchart of neural processing pathways in the hippocampus.

We assume that both during memory formation and recall many passes through the hippocampal
loop are used. We also assume that active neurogenesis in the DG is integral to at least memory
recall. Another (more complete) view of the hippocampal loop is shown in Figure 41. In this
figure the recall loop involves (potentially) all of cortex that provides input to the EC as well as
that which receives output from the EC.
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Figure 44 - Simple flowchart of neural processing pathways involving the hippocampus
and surrounding cortex.

The hippocampal loop in Figure 41includes other systems and functions, such as consolidation of
short-term to long-term memory .

5.2.2. Memory Formation and Reconstruction Using the Hippocampus

A framework for using both the compressed coding and randomized reconstruction aspects of
compressed sensing for long range communication in the brain has been previously described .
In this section we will describe how the location, structure and function of the hippocampus are
ideal for facilitating compressed sensing.

The hippocampus has several functions. One function of the hippocampus is to form episodic
memories , and another is in the formation of spatial memory {Moser, 2008 #53}. The
hippocampus is also involved in recall of these types of memories. The connections from
entorhinal cortex into the dentate gyrus correspond to compression. Entorhinal cortex receives
input from many areas of the brain, which are highly distributed and non-sparse. In the formation
of memories, activation in the dentate gyrus is sparse, such that these patterns of activation can
represent specific events in an episodic sequence. We will describe in this paper how the
hippocampus with neurogenesis facilitates recall of memories with compressed sensing.

With respect to the recall of memory through the hippocampus structure, think of the process
looping through the hippocampus possibly many times. The recall itself as well as the saliency of
the recalled memory can be initiated outside of the hippocampus, but looping through the
hippocampus allows very highly distributed neural signals from many areas of the brain to be
focused (fused/aggregated) together using the sparse representation of the dentate gyrus. Very
specific sparse combinations of the mature granule cells of the dentate gyrus act as keys to
specific memory events, keyed to other more distributed areas of the brain where specific details
(sensory activations, thoughts, emotions) are manifest. Looping through the hippocampus allows
this seemingly disparate activity to be brought together in one area. Later recall of specific events
can be easily managed if the neural keys are still in the dentate gyrus, but even if they are no
longer around similar keys can be formed allowing access to these memories. The description so
far has not mentioned compressed sensing, but that will be discussed next.

As described so far (above), the memory recall would necessitate compressed sensing, but it
could require a vast number of neural states and memory keys in the dentate gyrus to represent
the many, many possible memories encountered in everyday life. One way to facilitate more
efficient memory encoding and thus recall is to use a mechanism such as compressed sensing. In



this situation very detailed but much lower resolution components/parts of a memory are
distributed throughout the brain (outside the hippocampus), and then random sampling, a la
compressed sensing, is used to reconstruct/recombine the memory into a whole. The
hippocampus, specifically the dentate gyrus, is an ideal brain structure for facilitating this
random sampling, and since it (the DG) is also part of the looping mechanism for memory
construction (described above) it fits as an integral part. And neurogenesis is what seeds this
random sampling. New neurons (GCs) in the dentate gyrus initially form connections along
existing pathways, which means that these new neurons form at least partial links with existing
memory keys, but they also can facilitate random sampling with respect to these memory keys.
Immature dentate gyrus granule cell neurons are in general more active than mature cells. This
hyperactivity of the immature neurons can be thought of as adding randomness or noise to the
process of memory recall, which facilitates compressed sensing.

5.2.3. Using Neurogenesis to Randomly Sample during Memory Reconstruction

Figure 3 shows our general conceptual idea for using compressed sensing inspired by the neural
architecture and function of the hippocampus in creating more efficient high fidelity aggregate
sensors from smaller local (distributed) low fidelity sensor elements.
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Figure 45 - Conceptual diagram for reconstructing memory using aggregate sensor
filters and compressed sensing technology.

In the diagram in Figure 42, the ‘filters’ represent separate passes through the memory recall
loop (in the hippocampus) described above (see Figure 40), where each filter represents an at
least slightly different random projection of the low fidelity sensor data being aggregated into the
high fidelity reconstruction. With this conceptual model, we propose to develop domain specific
filters for processing sensor data (most likely an image) in a neural-inspired reconstruction loop.
Thus, we will produce a higher resolution sensor map (image) from lower resolution physical
sensor (camera).

Another view of compressed sensing using the hippocampal loop is shown in Figure 43. In this
figure instead of filters in the hippocampus we have keys to specific memory elements. These
elements are concentrated upon smaller regions of cortex and/or sensory input, and thus they are
lower in resolution than the desired overall reconstructed memory and most likely overlapping.
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Figure 46 - Conceptual diagram for reconstructing memory using distributed aggregate
sensor component and compressed sensing technology.

In this version of our conceptual model, the DG neurons represent keys to memory elements
from cortex (accessed through EC) instead of filters. For mature DG neurons these keys are
specifically linked to a particular memory event. Young DG neurons, which are only partially
connected to one (or more) mature neurons, facilitate randomized projections into the keyed
memory space (beyond EC). These younger neurons then serve as a randomized walk in memory
space during reconstruction of a memory (via multiple passes through the reconstruction loop)
using compressed sensing technology. Figure 44 shows a specific example of image
reconstruction using this conceptual model.

Reconstruction

Figure 47 - Example reconstruction of "soccer ball" image using conceptual model.

In general EC inputs to the hippocampus already include completed objects, and the function of
the hippocampus is to put these objects together in context with space and time sequences which
are keyed by the DG neurons. We are showing this example because it is easy to grasp, and we
believe straightforward to implement. We propose to use (overlapping) distributed low resolution
sensors (cameras) in a neural-inspired compressed sensing (loop) algorithm for generating high
resolution images. Future extensions to this conceptual model could include object fusion in
more complex scene contexts.

5.2.4. Conclusions/Future Directions

In this paper, we have described a neural-inspired framework for facilitating compressed sensing
for memory formation and recall using variations of neural processing loop described by the



architecture of the hippocampus. Both conceptual models will need to be extended to include
other (non-image) sensory data. In this setting the reconstructed memory element will also have
more dimensions (rather than the 2 dimensions shown conceptually in Figure 42 and Figure 43
above).



6. CONCLUSIONS

Although neurogenesis has been extensively studied by the neuroscience community, the details
of its computational impact on both cognition and potential algorithmic utility have remained
uncertain. While there have been a number of theories substantiated in part by behavioral
experimentation, most of these studies have only indirectly related neurogenesis to potential
functions. The high fidelity modeling described here is notable in large part because it is the first
study of neurogenesis to study the effects of new neurons at realistic scales. For a number of
reasons, scaling neural systems is non-trivial; the non-linearities of neurons and the sparse
representation of information in distributed ensembles raises challenges when drawing inferences
from reduced scale models. In the case of neurogenesis, where the relative activity of young
neurons and mature neurons is in large part due to the effective scale difference between the
different populations, reduced scale models greatly reduce the marginal impact of young
neurons.

Our observed impact of young neurons in preferentially encoding novel information that is not
represented by mature neurons has substantial potential algorithmic impact. Conventional
machine learning approaches have long suffered from the stability-plasticity dilemma, which
precludes systems trained on one set of information from effectively learning a new set of
information without risking either forgetting the previously trained data or failing to encode the
new data. Neurogenesis provides a potentially unique method for getting around this challenge,
though future work will be required to fully understand its algorithmic potential.

In conclusion, this work illustrates the value of bringing substantial computational resources
towards understanding the function of a neural system. Further, it demonstrates a path by which
neural insights can be converted into potentially novel algorithmic solutions to address mission
critical challenges.
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